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The oxetane nucleosides ~noroxetanocin [9-(13-D-erythro-oxetanosyl)adenine] and the a-epimer 
are synthesised from 3,5-di-O-benzyl-D-ribonolactone. 

Oxetanocin A (1) 1 was the fn'st example of a new family of nucleosides 2 containing an oxetane, rather than a 

furan, ring as the sugar moiety. This paper describes the synthesis of noroxetanocin (2), together with its a -  

isomer (3), from 3,5-di-O-benzyl-ribonolactone via 3 key steps: contraction of the trifluoromethanesulphonate 

ester of an ct-hydroxy-y-lactone to an oxetane-2-carboxylate, 3 introduction of an a-chloride into the oxetane 

by the Barton modification of the Hunsdiecker reaction, 4 and displacement of the chloride with adenine. 
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Diacetone glucose was converted into the dibenzyl lactone (4) in 8 steps 3 in an overall yield of 52%. 

Esterification of the sole free hydroxyl function in the ribonolactone (4) with trifluoromethanesulphonic 

anhydride in dichloromethane in the presence of pyridine gave the triflate (5) 5 in 95% yield. Treatment of (5) 

with potassium carbonate in dry methanol afforded the oxetane (6), in which the substituents at C-2 and C-3 

of the oxetane are trans to each other, as the major product; a small amount of the epimer (7) was also formed 

[combined yield 82% in a ratio of approximately 8: I ]. Partial separation of the epimeric mixture was achieved 

allowing full characterisation of (6), but it was not possible to obtain a pure sample of (7). The arabinono- 

triflate (8), epimeric at C-2 with (5), also underwent high yield ring contraction to (6); however, (8) is much 

less kinetically stable, so that the ring contraction of the ribono-triflate (5) is a much better method for the 

preparation of larger amounts of the oxetane (6). 
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Hydrolysis of the mixture of the epimeric oxetanes (6) and (7) with aqueous sodium hydroxide in methanol, 

followed by acidification and treatment of the crude acids with oxalyl chloride and a catalytic amount of 

dimethylformamide, gave the acid chlorides (9). Addition of (9) directly to a refluxing suspension of the 

sodium salt of N-hydroxypyridine-2-thione in tetrachloromethane in the presence of AIBN and 4- 

dimethylaminopyridine afforded, after purification by flash column chromatography, the epimeric 13- (10) 6 and 
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ct-chlorides (11) 7 in a [3/~t ratio of  6/5 and an overall yield of the two chloro compounds of 53% from the 

esters (6) and (7). The relative stereochemistry of  the chorooxetanes was established by equilibrium hoe  

measurements: thus a significant 1,3-cis relationship is indicated by a 4.6% enhancement between H-2 and H- 

4 of the [~-chlorooxetane (I0), with no enhancement between H-2 and H-3. In contrast, the ct-chloro isomer 

(11) exhibited a 7.5% enhancement between H-2 and H-3 with no enhancement between H-2 and H-4. 

BnOH2 -C O ~ COCI BnOH2C O CI 

OBn OBn 

BnOH2C O BnOH2C _ Ad BnOH2C O 

OBn OBn OBn 

(9) (10) (11) (12) (13) 

The ¢x-chlorooxetane (11) was treated with adenine, potassium carbonate, and 18-crown-6, in a 1 : 1 

mixture of dimethylformamide and acetonitrile for 4 h at 80oC, to give the protected 13-oxetane nucleoside 

(12), s (20% yield) separable by flash chromatography from the a-nucleoside (13), 9 (10% yield). The 13- 

chlorooxetane (10) gave, under similar conditions in I h at 80oc, the ct- and [],-oxetane nucleosides in a ratio 

of 7 to 1 and a combined yield of  46%; thus there is a large degree of SN2 character in the displacment of the 

~-chloride by adenine. The increased lack of selectivity in the displacement of the a-chloride reflects the longer 

reaction time; there is significant interconversion of the ~ and 13 chlorides under the reaction conditions, and it 

may be that the slower and less stereoselective displacement of  the cx-halide also proceeds predominantly by 

SN2 displacement. Debenzylation of  both (I 2) and (13) was achieved by transfer hydrogenation by palladium 

hydroxide and cyclohexene in ethanol in 85% yield to give, respectively, noroxetanocin (2) l° m.p. 237oc, 

la]D 20 -11.25 (c, 0.24 in H20) and the epimeric a-nucleoside (3). II The biological assay of  c¢- and 13- 

noroxetanocins against HIV-1 in vitro is described in the following paper. 12 
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